Biology of Sport
pISSN 0860-021X    eISSN 2083-1862
Archival Issues
Volume 33, 2016
Volume 32, 2015
Volume 31, 2014
Volume 30, 2013
Volume 29, 2012
Volume 28, 2011
Volume 27, 2010
Volume 26, 2009
Volume 25, 2008
Volume 24, 2007
Volume 23, 2006
Volume 22, 2005
Volume 21, 2004
Volume 20, 2003
Archival Issues 1984-1998
Search
Newsletter
Information for Authors
Special Information
 » 
Journal Abstract
 
High cycling cadence reduces carbohydrate oxidation at given low intensity metabolic rate
Ralph Beneke, Ahmad Alkhatib
Biol Sport 2015; 32(1):27-33
ICID: 1126325
Article type: Original article
IC™ Value: 10.00
Abstract provided by Publisher
 
Cycling cadence (RPM)-related differences in blood lactate concentration (BLC) increase with increasing exercise intensity, whilst corresponding divergences in oxygen uptake (VO2) and carbon dioxde production (VCO2) decrease. We tested the hypothesis, that a higher RPM reduces the fraction (%) of the VO2 used for carbohydrate oxidation (relCHO) at a given BLC. Eight males (23.9 +/- 1.6 yrs; 177 +/- 3 cm; 70.3 +/- 3.4 kg) performed incremental load tests at 50 and 100 RPM. BLC, VO2 and VCO2 were measured. At respiratory exchange ratios (RER) <1, relCHO were calculated and the constant determining 50% relCHO (kCHO) was approximated as a function of the BLC. At submaximal workload, VO2 and RER were lower (p<0.001) at 50 than at 100 RPM. No differences were observed in VO2peak (3.96 +/- 0.22 vs. 4.00 +/ 0.25 l min-1) and RERpeak (1.18 +/- 0.02 vs. 1.15 +/- 0.02). BLC was lower (p<0.001) at 50 than at 100 RPM irrespective of cycling intensity. At 50 RPM, kCHO (4.2 +/- 1.4 (mmol l-1)3) was lower (p<0.05) than at 100 RPM (5.9 +/- 1.9 (mmol l-1)3). This difference in kCHO reflects a reduced CHO oxidation at a given BLC at 100 than at 50 RPM. At a low exercise intensity, a higher cycling cadence can substantially reduce the reliance on CHO at a given metabolic rate and/or BLC.

ICID 1126325

DOI 10.5604/20831862.1126325
 
FULL TEXT 485 KB


Related articles
  • in IndexCopernicus™
         aerobic [5 related records]
         respiratory exchange ratio [0 related records]
         Lactate [7 related records]
         pedaling rate [0 related records]


  •  

    Copyright © Biology of Sport  2017
    Page created by Index Copernicus Ltd. All Rights reserved.