Biology of Sport
pISSN 0860-021X    eISSN 2083-1862
Archival Issues
Volume 34, 2017
Volume 33, 2016
Volume 32, 2015
Volume 31, 2014
Volume 30, 2013
Volume 29, 2012
Volume 28, 2011
Volume 27, 2010
Volume 26, 2009
Volume 25, 2008
Volume 24, 2007
Volume 23, 2006
Volume 22, 2005
Volume 21, 2004
Volume 20, 2003
Archival Issues 1984-1998
Information for Authors
Special Information
Journal Abstract
Reduced susceptibility to eccentric exercise-induced muscle damage in resistance-trained men is not linked to resistance training-related neural adaptations
Xin Ye, Travis W Beck, Nathan P Wages
Biol Sport 2015; 32(3):199-205
ICID: 1150301
Article type: Original article
IC™ Value: 10.00
Abstract provided by Publisher
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6  kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.

ICID 1150301

DOI 10.5604/20831862.1150301

Related articles
  • in IndexCopernicus™
         resistance training [2 related records]
         training status [1 related records]
         eccentric exercise [2 related records]
         muscle damage [1 related records]
         Electromyography [1222 related records]
         Neural adaptations [0 related records]


    Copyright © Biology of Sport  2017
    Page created by Index Copernicus Ltd. All Rights reserved.