Biology of Sport
pISSN 0860-021X    eISSN 2083-1862
Archival Issues
Volume 34, 2017
Volume 33, 2016
Volume 32, 2015
Volume 31, 2014
Volume 30, 2013
Volume 29, 2012
Volume 28, 2011
Volume 27, 2010
Volume 26, 2009
Volume 25, 2008
Volume 24, 2007
Volume 23, 2006
Volume 22, 2005
Volume 21, 2004
Volume 20, 2003
Archival Issues 1984-1998
Information for Authors
Special Information
Journal Abstract
Effect of switching pedal rate model on slow component of oxygen uptake during heavy-cycle exercise
T Migita, K Hirakoba
Biol Sport 2007; 24(3):191-207
ICID: 890551
Article type: Original article
IC™ Value: 9.36
Abstract provided by Publisher
We examined the effect of a change in the muscle fiber recruitment patterns on the occurrence of the VO2 slow component (VO2SC) using both a previously employed exercise model for maintaining a given pedal rate (60 rpm: 60con or 110 rpm:110con) throughout constant-load exercise and a newly designed exercise model for switching the pedal rate at the halfway point (60→110 rpm:60→110swi or 110→60 rpm:110→60swi) during constant-metabolic demand cycling exercise. Seven healthy male volunteers [mean ± SD: age 24±2 years, body mass 64.8±7.5 kg] performed four square-wave transitions at work rates calculated from each relationship between the oxygen uptake and the work rate obtained in two incremental cycling tests with 60 rpm and 110 rpm. The work rates were set to require a VO2 at the ventilatory threshold (VT) plus a VO2 equal to 50% of the difference between the VT and the peak VO2 (50%Δ). Both pulmonary gas exchange parameters and surface electromyogram (EMG) were measured during all transition exercises. VO2 above rest (ΔVO2) divided by the total mechanical power output (Wtot = external + internal power outputs) (ΔVO2/Wtot), which was estimated as an index for the oxygen cost per unit of all work accomplished in 60→110swi and 110→60swi, showed either a decrease or an increase concomitant with the switching pedal rates, respectively. Similarly, the integrated EMG (iEMG) after the halfway point of the exercise tests tended to decrease for 60→110swi and increase for 110→60swi, respectively. From the results of this study (ΔVO2/Wtot and iEMG responses), it is inferred that the exercise model designed in this study may induce a change in the muscle fiber recruitment pattern from the halfway point during constant-metabolic demand exercise. However, no differences were observed in the amplitude of the VO2SC among the four trials, thus indicating that a change in the muscle fiber recruitment pattern is therefore not closely related to the appearance of VO2SC during constant-metabolic demand cycling exercise. Therefore, we believe that some other factors exist in the exercising muscle which is responsible for the induction of VO2SC.

ICID 890551

Related articles
  • in IndexCopernicus™
         Oxygen cost [0 related records]
         Mechanical power output [0 related records]
         EMG [4 related records]
         Pedal rate [0 related records]


    Copyright © Biology of Sport  2017
    Page created by Index Copernicus Ltd. All Rights reserved.